114 research outputs found

    Ego-motion Estimation Based on Fusion of Images and Events

    Full text link
    Event camera is a novel bio-inspired vision sensor that outputs event stream. In this paper, we propose a novel data fusion algorithm called EAS to fuse conventional intensity images with the event stream. The fusion result is applied to some ego-motion estimation frameworks, and is evaluated on a public dataset acquired in dim scenes. In our 3-DoF rotation estimation framework, EAS achieves the highest estimation accuracy among intensity images and representations of events including event slice, TS and SITS. Compared with original images, EAS reduces the average APE by 69%, benefiting from the inclusion of more features for tracking. The result shows that our algorithm effectively leverages the high dynamic range of event cameras to improve the performance of the ego-motion estimation framework based on optical flow tracking in difficult illumination conditions

    Correct-By-Construction Fault-Tolerant Control

    Full text link
    Correct-by-construction control synthesis methods refer to a collection of model-based techniques to algorithmically generate controllers/strategies that make the systems satisfy some formal specifications. Such techniques attract much attention as they provide formal guarantees on the correctness of cyber-physical systems, where corner cases may arise due to the interaction among different modules. The controllers synthesized through such methods, however, may still malfunction due to faults, such as physical component failures and unexpected operating conditions, which lead to a sudden change of the system model. In these cases, we want to guarantee that the performance of the faulty system degrades gracefully, and hence achieve fault tolerance. This thesis is about 1) incorporating fault detection and detectability analysis algorithms in correct-by-construction control synthesis, 2) formalizing the graceful degradation specification for fault tolerant systems with temporal logic, and 3) developing algorithms to synthesize correct-by-construction controllers that achieve such graceful degradation, with possible delay in the fault detection. In particular, two sets of approaches from the temporal logic planning domain, i.e., abstraction-based synthesis and optimization-based path planning, are considered. First, for abstraction-based approaches, we propose a recursive algorithm to reduce the fault tolerant controller synthesis problem into multiple small synthesis problems with simpler specifications. Such recursive reduction leverages the structure of the fault propagation and hence avoids the high complexity of solving the problem monolithically as one general temporal logic game. Furthermore, by exploring the structural properties in the specifications, we show that, even when the fault is detected with delay, the problem can be solved by a similar recursive algorithm without constructing the belief space. Secondly, optimization-based path planning is considered. The proposed approach leverages the recently developed temporal logic encodings and state-of-art mixed integer programming (MIP) solvers. The novelty of this work is to enhance the open-loop strategy obtained through solving the MIP so that it can react contingently to faults and disturbance. Finally, the control synthesis techniques developed for discrete state systems is shown to be applicable to continuous states systems. This is demonstrated by fuel cell thermal management application. Particularly, to apply the abstraction-based synthesis methods to complex systems such as the fuel cell thermal management system, structural properties (e.g., mixed monotonicity) of the system are explored and leveraged to ease abstraction computation, and techniques are developed to improve the scalability of synthesis process whenever the system has a large number of control actions.PHDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/155031/1/yliren_1.pd

    Label-free high-throughput photoacoustic tomography of suspected circulating melanoma tumor cells in patients in vivo

    Get PDF
    Significance: Detection and characterization of circulating tumor cells (CTCs), a key determinant of metastasis, are critical for determining risk of disease progression, understanding metastatic pathways, and facilitating early clinical intervention. Aim: We aim to demonstrate label-free imaging of suspected melanoma CTCs. Approach: We use a linear-array-based photoacoustic tomography system (LA-PAT) to detect melanoma CTCs, quantify their contrast-to-noise ratios (CNRs), and measure their flow velocities in most of the superficial veins in humans. Results: With LA-PAT, we successfully imaged suspected melanoma CTCs in patients in vivo, with a CNR >9. CTCs were detected in 3 of 16 patients with stage III or IV melanoma. Among the three CTC-positive patients, two had disease progression; among the 13 CTC-negative patients, 4 showed disease progression. Conclusions: We suggest that LA-PAT can detect suspected melanoma CTCs in patients in vivo and has potential clinical applications for disease monitoring in melanoma

    A note on some sufficient conditions for mixed monotone systems

    Full text link
    Mixed monotone systems form an important class of nonlinear systems that have recently received attention in abstraction-based control design area. Slightly different definitions exist in the literature, and it remains a challenge to verify mixed monotonicity of a system in general. In this paper, we first clarify the relation between different existing definitions of mixed monotone system, and then provide a new and more general sufficient condition for mixed monotonicity. Discussions are provided regarding to these two main contributions.DARPAFord Motor Co.NSFhttp://deepblue.lib.umich.edu/bitstream/2027.42/136122/1/main.pd

    A new alternating predictive observer approach for higher bandwidth control of dual-rate dynamic systems

    Get PDF
    Dual-rate dynamic systems consisting of a sensor with a relatively slow sampling rate and a controller/actuator with a fast updating rate widely exist in control systems. The control bandwidth of these dual-rate dynamic systems is severely restricted by the slow sampling rate of the sensors, resulting in various issues like sluggish dynamics of the closed-loop systems, poor robustness performance. A novel alternating predictive observer (APO) is proposed to significantly enhance the control bandwidth of a generic dual-rate dynamic systems. Specifically, at each fast controller/actuator updating period, we will first implement the prediction step by using the system model to predict the system output, generating a so-called virtual measurement, when there is no output measurement during the slow sampling period. Subsequently, the observation step is carried out by exploiting this virtual measurement as informative update. An APO-based output feedback controller with a fast updating rate is developed and rigorous stability of the closed-loop system is established. The superiority of the proposed method is demonstrated by applying it to control a permanent magnet synchronous motor system.</p
    • …
    corecore